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Abstract

Application of multivariate curve resolution alternating least squares (MCR-ALS), for the resolution and quantification of different analytes
in different type of pharmaceutical and agricultural samples is shown. In particular, MCR-ALS is applied first to the UV spectrophotometric
quantitative analysis of mixtures of commercial steroid drugs, and second to the near-infrared (NIR) spectrophotometric quantitative analysis of
humidity and protein contents in forage cereal samples. Quantitative results obtained by MCR-ALS are compared to those obtained using the well
established partial least squares regression (PLSR) multivariate calibration method.

© 2007 Published by Elsevier B.V.
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1. Introduction

In this work, direct quantitative spectrophotometric deter-
mination of mixtures of analytes in two types of samples is
investigated. First, mixtures of pharmaceutical products in drug
samples are analyzed by UV-vis spectrophotometry. This tech-
nique is arapid and inexpensive analytical technique and as such
is highly suitable for control analyses of pharmaceutical prepa-
rations. However, the lack of selectivity of UV—vis absorption
measurements hinders its general application in the presence of
strongly overlapped absorption bands of the different sample
components. Pharmaceutical preparations are usually mixtures
of the active principles and of various excipients absorbing
in the same spectral region. The development of multivariate
calibration methods based on the mathematical resolution of
multivariate signals can allow their rapid resolution and quan-
tification. The second type of samples studied in this work are
forage (cereal) agricultural samples analyzed by near-infrared
(NIR) spectroscopy. This technique has gained wider acceptance
in different fields, due to its advantages over other analytical
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spectroscopic techniques. One of the best advantages of NIR
spectroscopy is the possibility of working in reflectance mode
and the use of fibre optical probe modules easily coupled to the
spectrophotometer. This allows measurements of solid and lig-
uid samples with little sample pretreatment, the implementation
of continuous methodologies, the fast acquisition of spectra and
the prediction of both physical and chemical parameters from
the same sample. Near-infrared spectrophotometry (NIRS) is
a non-destructive technique, very fast and easy to implement,
without needing reagents and without wastes produced. Once
calibrated, NIRS is simple to operate and it is well suited for
the determination of the major components in many types of
samples, such as protein and water contents in food and for-
age samples. Multivariate calibration methods like partial least
squares regression (PLSR) have been frequently used to extract
analytical information from UV-vis and NIR spectra.

Since in general it is very difficult to have completely
selective analytical signals for every analyte of interest in a
multicomponent sample, their physical separation by chromato-
graphic methods or by any other analytical separation methods,
or their mathematical resolution using chemometric methods
is a preliminary step necessary for their quantitative determi-
nation, especially in the analysis of complex natural samples.
Apart from the well known multivariate calibration methods
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like PLSR [1,2] other chemometric methods exist that allow for
the direct mathematical analysis of the different components in
evolving mixture systems (Evolving Factor Analysis, EFA) [3],
for the detection of the more selective variables (SIMPLISMA
[4-6]) or for the resolution of the components simultaneously
present in a particular data window (Window Factor Analysis
method [7]). The multivariate curve resolution alternating least
squares (MCR-ALS) method proposed in this work [8—13] has
been shown to provide an improved resolution compared to other
methods and to allow quantitative determinations in the analy-
sis of complex mixtures using spectroscopic means. MCR-ALS
has been applied to the study of complex industrial evolving
processes [14], to the investigation of multiequilibria systems
using spectroscopic titrations (fluorescence, UV—vis absorption,
etc.) [15], to the resolution of multiple coeluted peaks in chro-
matography [10], to the resolution and quantification of mixtures
in flow injection analysis [16], to the resolution of the differ-
ent components in kinetic reactions and processes [17], to the
resolution of spectroscopic images [18], to multidimensional
spectroscopy [19], to electrophoretic studies of amino acids [20],
to voltammetric studies of metal complexes [21-23], to studies
of conformational changes of polynucleotide [24] and protein
folding processes [25], and to the resolution and apportionment
of environmental sources of contamination [26]. In this work,
the use of MCR-ALS is proposed for the quantitative determina-
tion of mixtures of analytes using first order spectrophotometric
data (UV—-vis and NIR absorption spectrophotometric data). A
correlation constraint introduced in a previous work for the anal-
ysis of mixtures of metal ions analyzed by voltammetry [22] is
extended in this work to establish alternating least squares (ALS)
multivariate calibration models for the quantitative determina-
tion of analyte mixtures using UV and NIR spectrophotometric
data. The results obtained using MCR-ALS with this new cor-
relation constraint are then compared to those obtained using
the nowadays well established PLSR multivariate calibration
[37].

2. Experimental
2.1. Reagents and solutions
The following reagents and solutions were used:

- Acetonitril (Carlo Erba) for HPLC.

- Methanol (Panreac) was used for the synthetic preparation of
standard, synthetic mixture and drug samples.

- Etinilestradiol (Sigma), minimum 98% (HPLC).

- Levonorgestrel (Sigma), minimum 98% (HPLC).

2.2. Pharmaceutical products

Concentrated stock solutions of etinilestradiol and lev-
onorgestrel were prepared in methanol. From these stock
solutions, 25 synthetic mixtures were prepared from which 15
samples were used as a calibration data set, and the remaining
samples were used as external validation data set. The concentra-
tion range of etinilestradiol was between 3 and 31 mg/l, and for

levonorgestrel between 3 and 20 mg/l. Etinilestradiol and lev-
onorgestrel were analyzed in commercial drugs: Microgynon,
Neogynona and Triagynon (ochre and brown color). From 30
original drug samples, 20 were used as a calibration data set,
and the remaining samples were used as external validation data
set.

The procedure used to prepare the drug samples was the
following: for each drug around 20 tablets were weighted,
grinded and homogenized. Methanol was used as dissolvent.
Drug samples were placed in an ultrasounds bath and then
centrifuged. UV—vis spectra were recorded, using methanol
as a blank. Concentrations of the two analytes in these drug
samples were estimated by high performance of liquid chro-
matography (HPLC). Chromatographic determinations were
performed using diode array UV-vis, Hewlett Packard detector.
The column used is a reversed phase Spherisorb ODS-2 C18 col-
umn (15cm long x 0.4 cm i.d., 5 wm particle size) with a C18
precolumn. The mobile phase composition used for the chro-
matographic determinations was acetonitril/H, O (40/60) (v/v).
A flow rate of 1.2 ml/min was used.

2.3. Forage samples

Different analytes in Ray-Grass forage samples were deter-
mined. The experimental procedure used before analyzing the
Ray-Grass samples by means of NIR spectrophotometry was
rather simple: samples were grinded, milled, homogenized, put
in a capsule and directly measured by NIR spectrophotometry.
Spectra from 125 samples were selected randomly for calibra-
tion, and spectra from other 46 samples were used for validation.
Calibration samples were selected randomly trying to cover all
the observed spectral data variance. If one of the selected vali-
dation samples resulted to be outside of the range covered by the
calibration samples, it was exchanged by a calibration sample
within the calibration range.

Humidity reference concentrations were estimated from the
sample weight loss after oven drying at 103 °C for4 h [27]. Some
volatile compounds apart from water could evaporate decreas-
ing sample total weight and causing excess errors, while other
compounds may be oxidized, increasing the sample total weight
and causing defect errors. Weight errors will depend on the
compensation of these two effects. Protein reference concen-
trations have been estimated from nitrogen content analyzed
using Kjeldhal method [28,29] and multiplied by a factor equals
to 6.25 (which is derived from the fact that proteins of for-
ages have an average content of nitrogen equals approximately
to 15%). The humidity concentration range was between 4.86
and 13.33% (w/w), and for protein between 6.53 and 21.70%
(w/w).

2.4. Instrumentation

UV-vis spectrophotometric determinations were performed
by a Hewlett-Packard (Waldbronn, Germany) HP8452A diode
array spectrophotometer. The instrument’s bundled software
HP 89530 MS-DOS UV-vis includes facilities for controlling,
acquiring and processing spectra. In Fig. 1, the normalized
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Fig. 1. Spectra of etinilestradiol and levonorgestrel analytes (left) and spectra of a synthetic mixture of them and of Microgynon and Neogynona drugs (right).

experimental spectra of etinilestradiol and levonorgestrel are
presented (left), as well as spectra of the synthetic and com-
mercial drug mixtures of them (right).

- Ultrasounds Bath, Selecta 0.61.

- Centrifuge, Arlesa model Digicen.

- NIR spectrophotometric determinations were performed
using NIRSystems 6500 FOSS spectrophotometer. Each of
the spectra finally considered is an average of 32 diffuse
reflectance spectra. Sample containers were rectangular cups.
The wavelength interval was 1100-2500 nm with 2 nm resolu-
tion. In Fig. 2, the obtained spectra of Ray-Grass samples are
shown. Laboratory temperatures were always kept between
20 and 25 °C and relative humidity was always between 45
and 65%.

3. Chemometric methods

3.1. Multivariate curve resolution alternating least squares
(MCR-ALS)

The first step of this chemometric data analysis procedure is
to build up the data matrix, D. In the rows of this data matrix are
the different individual spectra measured for the different ana-
lyzed samples and in the columns the absorbance (UV-vis) or
Log 1/R (NIRS) measured values at each spectral wavelength.
First a rough estimation of the possible number of components
is obtained using different methods like principal component
analysis (PCA) [2,5,13]. A bilinear relation between the exper-
imental data, the concentrations and the pure spectra of the
components is assumed, of analogous structure to the general-
ized law of Lambert-Beer [30], where the individual responses
of each analyte or component are additive. In matrix form, this
bilinear model is expressed in the following way:

D=CST+E 1)

where D(/,J) is the matrix of experimental data, of dimensions
I samples (spectra) by J wavelengths; C(/,K) is the matrix of

concentration profiles of the different K analytes presents in the
samples; ST(K,J) is the spectra matrix, whose K rows contain the
pure spectra associate with the K species present in the samples;
E(Z,J) is the matrix associated to the experimental error. The
resolution of experimental spectral data matrix D consists of the
following steps, which are summarized in Fig. 3.

To initiate the iterative ALS procedure, an initial estimation is
needed for the spectral or concentration profiles for each species.
Different methods are used for this purpose like evolving fac-
tor analysis [1-3] or the determination of the purest variables
[4-6]. In this work, initial estimations based on purest variables
were preferred. If the initial estimations are the spectral profiles,
the unconstrained least squares solution for the concentration
profiles can be calculated from the expression:

c=ps"" )

where (ST)* is the pseudoinverse matrix of the spectra matrix
ST, which is equal to S(STS)_I, when ST is of full rank [31]. If
the initial estimations are the concentration profiles, the uncon-
strained least squares solution for the spectra can be calculated

Log ¥R
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Fig. 2. NIR spectra of Ray-Grass calibration samples.



1204

Experimental

Data matrix
D

Estimation of number of

Initial Estimation €rmimememen components
(SIMPLISMA) SVD
STinit

Solving D=CST+E
For C and ST
Iteratively using ALS

No-negativity

ALS—‘ +«——— | Constraints

Correlation

Concentration Spectra
Profiles ST
c
e =

Qualitative information
(Identification)

Quantitative information
(Calibration, Validation,
Prediction)

Fig. 3. Scheme of step of the resolution process in MCR-ALS method. See
Section 3.1.

from the expression:

sT=c'D (3)
where C* is pseudoinverse of matrix C (C* = (CTC)~'CT, when
C s of full rank) [31]. Both steps can be implemented in an alter-
nating least squares cycle so that in each iteration new matrices
of C and ST are then obtained. However, during these iterative
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calculations, a series of constraints with the purpose of giving
solutions with physical meaning and of limiting their possible
number are applied [11,12]. Iterations continue until an optimal
solution is obtained that fulfils the constraints postulated and
the established convergence criteria. Constraints applied in this
work are only described briefly.

3.1.1. Nonnegativity concentration constraint

This is a general constraint used in curve resolution methods
[32-36]. It is applied to the concentration profiles, due to the
fact that the concentrations of the chemical species are always
positive values or zero.

3.1.2. Nonnegativity spectra constraint

The application of this constraint depends on what instru-
mental technique is used for detection. In the case of UV-vis or
NIR spectra, the intensity of the radiation absorbed or reflected
by the sample never takes negative values.

3.1.3. Correlation constraint

This constraint has been introduced for the simultaneous
quantitative analysis of mixtures of metal ions using voltammet-
ric analysis and it implies [22] the establishment of calibration
models for MCR-ALS, to be used for the quantitative determi-
nation of the analytes in the presence of unknown interferences.
In this work, this constraint is extended to quantitative analysis
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Fig. 4. Detailed description of the correlation constraint. See Section 3.1.
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of spectral data in the simultaneous analysis of different analytes
in samples of increasing complexity, including forage samples.
This correlation constraint is explained in detail in Fig. 4, and
it consists, of a series of steps performed during each iteration
of the ALS optimization. Concentrations of a particular analyte
in calibration samples, cff]{s, obtained by ALS at each iteration
are correlated with previously known reference concentration
values of the analyte ¢! in these samples. A local linear model

between the values cCAaI[S and ¢!, is then built up so that:

¢ = beSi g + b + €F 4)

where, b and by are then the slope and offset values which better
fit cffﬁs to ¢™f, obtained by least squares linear regression, and
™! is the error in the reference concentrations (not modeled) The
corresponding concentration values of these calibration samples
calculated using this local model are:

¢l = beSd o + by ®)

And in order to predict the unknown concentration of the

analyte in the new prediction samples ¢""%, the equation used is:

¢k = petitks + by (6)

where b and by are the values obtained previously in the cal-
ibration step from ¢ and CK“LkS are the concentrations of the
samples predicted by ALS. Each ALS iteration is then com-
pleted after updating the obtained values of prediction (i.e., by

substitution of eI by &""%).

3.2. Partial least squares regression (PLSR)

PLSR method has been widely used in chemometrics to
regression problems with highly correlated variables as it is often
encountered in spectroscopy [37,38]. This regression method is
based on a prediction model for the analyte concentration in the
samples using efficiently the information contained in both data
blocks, the spectroscopic data block (D matrix) and the concen-
trations data block (¢ vector). D and ¢ were mean-centered prior
to decomposition in factors. The PLSR algorithm selects succes-
sive orthogonal factors that maximize the covariance between
spectra (D matrix) and analyte concentration (¢ vector). The
objective of fitting a PLSR model, is to find a few number of
PLSR factors that explain most of the covariation between both
datablocks. Briefly, PLSR decomposes D and c into factor scores
(T) and factor loadings (P and q) according to:

D=TP"+E N
c=Tq+f ®)

where T is the scores matrix, PT and q are the matrix and vector
loadings describing the variance in D and ¢, respectively, and E
and f are the residuals in D and ¢, respectively. This decompo-
sition is performed simultaneously and in such a way that the
first few factors should explain most of the covariation between
D and c. The remaining factors resemble noise and can thus be
ignored, hence the addition of residuals E and f.

3.3. Validation of results

In order to asses the quality of multivariate calibration models
(from PLSR and MCR-ALYS), it is convenient to do their vali-
dation using new samples not used during the calibration step.
In this work, external validation was performed using a set of
independent samples, whose spectra were not used to build the
calibration model. From the whole original data set, a number of
representative samples were selected for the calibration set. The
remaining samples were then only used to validate the model.

The following expressions were used to express the validation
results:

Root mean square error of prediction (RMSEP)

PV
RMSEP — || =16 &) ©)
n
Standard error of prediction (SEP)
A . 2
SEP = ¢ 2iz1(6i — & — Bias) (10)
n—1
Bias (is a meaning of systematic error)
n PR A.
Bias = 2ui=1(i = &) (11)
n

In all these expressions, ¢; and ¢; are, respectively, the known
and calculated analyte concentration in sample i, and 7 is the
total number of samples considered in the validation. Also in
order to evaluate the quality of the obtained results of the con-
centrations predicted by the application of the MCR-ALS or
PLS models, for a particular analyte using n samples, the rela-
tive error in the predicted concentrations, in percentage (RE%),
was calculated as:

RE (%) = 100 (12)

3.4. Chemometrics software

Data processing and PLS calibration calculations were car-
ried out using commercial software packages: PLS Toolbox
software version 2.1 (Eigenvector research, WA, USA) in
MATLAB computer and visualization environment (The Math-
works, MA, USA),and UNSCRAMBLER software version 6.11
(CAMO A/S, Trondheim, Norway, 1986—1997). Multivariate
curve resolution (MCR-ALS) has been implemented in MAT-
LAB and it is available in Internet. See Ref. [13] for further
details.
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4. Results and discussion

4.1. MCR-ALS resolution and quantification of
etinilestradiol and levonorgestrel steroids on commercial
drugs analyzed by UV spectrophotometry

MCR-ALS has been applied first to synthetic experimental
mixture samples for the resolution and quantification of steroids.
Results were compared to those obtained by application of
PLSR. Different wavelength intervals were investigated.

In Fig. 1, spectral profiles obtained by MCR-ALS are given.
They are in agreement with the spectra of etinilestradiol and
levonorgestrel pure standards. In contrast to MCR-ALS, PLS
regression does not provide direct estimation of the pure spec-
tra of the components of the mixture, although PLS loadings
and weights may be interpreted in relation to the more rele-
vant spectral features of the components present in the analyzed
mixtures, specially for those for which the quantitative analytic
information is available during the calibration step.

Quantitative results obtained by ALS and PLS methods for
the different wavelength intervals are compared in Table 1.

Errors in Table 1 are obtained for external validation samples
of synthetic mixtures. Number of components used in the cal-
ibration model was two in both cases, either for etinilestradiol
or levonorgestrel. Constraints used in ALS optimization were
non-negativity (for concentration and spectra profiles) and the
new correlation constraint proposed in this work. Quantifica-
tion errors obtained by MCR-ALS are in all the cases of the
same order of magnitude than those obtained by application
of PLSR. Bias in the case of etinilestradiol is higher than the
bias obtained for levonorgestrel, which might be due to the
lower concentrations used for this analyte in the mixtures. In
the case of etinilestradiol the 230-300 nm interval gave the opti-
mal quantification results and for levonorgestrel the best interval
was 220-300 nm. Once the wavelength interval was chosen for
the analysis of the two analytes in their synthetic mixtures,
commercial drugs were analyzed using the same conditions.

Table 2

T. Azzouz, R. Tauler / Talanta 74 (2008) 1201-1210

Table 1

Figures of merit in the quantitative analysis of etinilestradiol and levonorgestrel
analytes in synthetic mixtures using UV spectrophotometry (at different wave-
length ranges) and PLS and MCR-ALS multivariate calibration methods

RMSEP SEP Bias RE (%) r
Etinilestradiol
220-300 nm
ALS 0.738 0.486 0.581 3.316 0.9996
PLS 0.721 0.480 0.564 3.242 0.9996
230-300 nm
ALS 0.616 0.395 0.493 2.769 0.9997
PLS 0.610 0.399 0.483 2.742 0.9997
250-300 nm
ALS 0.591 0.371 0.478 2.655 0.9994
PLS 0.645 0.383 0.536 2.897 0.9994
Levonorgestrel
220-300 nm
ALS 0.098 0.073 0.070 0.784 0.9999
PLS 0.093 0.072 0.065 0.749 0.9999

RMSEP is root mean square error of prediction (Eq. (9)); SEP is standard error
of prediction (Eq. (10)); Bias is a systematic error (Eq. (11)); 72 is coefficient
of correlation between calculated and actual concentration values of the ana-
lyzed compounds; RE% is the relative error in the predicted concentrations, in
percentage (Eq. (12)). See text.

In Table 2 (upper part), results of the quantification of
etinilestradiol and levonorgestrel steroids in Microgynon, com-
mercial drug are given. Quantification of etinilestradiol in
Microgynon resulted to be better in the 250-300 nm wavelength
interval than in 220-300 nm range (see below), using three
components, either for PLSR or MCR-ALS. Obtained errors
were of the same order for MCR-ALS and PLSR. These errors
were slightly higher than those obtained for synthetic mixtures,
which is reasonable, since in synthetic mixtures no excipient
interferences were present. Also since etinilestradiol is a minor
component, it was more affected by the presence of these inter-
ferences. For levonorgestrel, rather good quantification results
were obtained at the same wavelength intervals than with syn-

Figures of merit in the quantitative analysis of etinilestradiol and levonorgestrel analytes, in Microgynon, Neogynona and Triagynon (brown and ochre) commercial
drugs, using UV spectrophotometry (at different wavelength ranges) and PLS and MCR-ALS methods

Etinilestradiol (250-300 nm)

Levonorgestrel (220-300 nm)

RMSEP SEP Bias RE (%) r”? RMSEP SEP Bias RE (%) P

Microgynon

ALS 0.149 0.086 0.129 4.534 0.9919 0.284 0.279 0.150 1.723 0.9998

PLS 0.143 0.081 0.125 4.366 0.9931 0.282 0.278 0.146 1.706 0.9998
Neogynona

ALS 0.062 0.073 0.017 1.856 0.9963 0.184 0.226 0.002 1.007 0.9979

PLS 0.088 0.075 0.063 2.642 0.9964 0.200 0.229 —0.071 1.094 0.9980
Triagynon (brown)

ALS 0.439 0.304 —0.361 4.457 0.9907 0.685 0.522 —0.551 3.747 0.9947

PLS 0.422 0.289 —0.349 4.287 0.9906 0.704 0.528 —0.557 3.856 0.9936
Triagynon (ochre)

ALS 0.092 0.064 6.38672 2.909 0.9921 0.165 0.206 —321le7? 1.226 0.9970

PLS 0.124 0.071 1.09¢7! 3.927 0.9873 0.159 0.181 —6.0¢672 1.183 0.9986

See Table 1 for the meaning of RMSEP, SEP, bias, 7% and RE (%).
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thetic mixtures (220-300 nm), either using MCR-ALS or PLSR,
using three components in each case.

In Table 2 (middle part), results in the quantification of the
same analytes in Neogynona drug are given. The optimal interval
for the quantification of etinilestradiol in Neogynona commer-
cial drug was the same than for the quantification of Microgynon
(250-300 nm). The use of the more restricted 250-300 nm spec-
tral range for the analysis of these two commercial drugs instead
of the 220-300 nm spectral range used during the analysis of the
synthetic mixtures was due to the presence of drug interferences
(excipient) that also absorb in the 220-250 nm spectral range.
The inclusion of the 220-250 range would affect negatively the
quantification of etinilestradiol in the commercial drugs. So,
finally the 250-300 nm spectral range was considered to be the
best one for the quantification of this analyte. Obtained errors
were of the same order for MCR-ALS and for PLSR, and a little
higher than for the synthetic mixtures. For levonorgestrel also
a good quantification was obtained in the same wavelengths
interval than for synthetic mixtures (220-300 nm), either for
MCR-ALS or for PLSR. The number of components used to
explain the model for each analyte, were in this case (like for
Microgynon) three components, either for PLSR or MCR-ALS.

And finally, also in Table 2 (lower part), obtained results for
the quantification of the two steroids in Triagynon (brown and
ochre color), using MCR-ALS and PLS are also given. Optimal
wavelength interval for the quantification of etinilestradiol in
Triagynon (ochre and brown color pills) was at 250-300 nm,
and obtained errors were of the same order for MCR-ALS and
for PLSR. For levonorgestrel, the optimal quantification was
obtained in the wavelength interval of 230-300 nm, either for
MCR-ALS or for PLSR. The number of components used to
explain the model, for each analyte, was again three components,
either for PLSR or for MCR-ALS.

Differences observed in the results obtained in all cases by
application of MCR-ALS or PLSR were considered to be little
significant. A deeper interpretation of these small differences
would require the study of a larger number of samples with a

better control of the factors that can influence these small dif-
ferences. Nevertheless, it is possible to conclude that at least
in the analysis of synthetic mixtures and in the analysis of the
investigated commercial drugs, MCR-ALS provided quantita-
tive results of similar quality to those provided by the application
of PLSR. The obvious advantage of MCR-ALS compared to
PLSR is, however, that MCR-ALS recovers the qualitative infor-
mation as well, including the pure spectra of the components
(Fig. 1), and also of the interferents, allowing their possible
identification/confirmation.

4.2. MCR-ALS resolution and quantification of humidity
and protein content on natural samples (Ray-Grass)
analyzed by NIR spectrophotometry

NIR spectroscopy has been widely applied as an analyti-
cal technique in the agricultural food sector, using partial least
squares (PLS) to develop calibration equations for the determi-
nation of the humidity and protein content [39—41]. In this work,
MCR-ALS and PLS methods have been applied and compared
in the analysis of natural Ray-Grass forage samples using NIR
spectrophotometry, with the purpose of obtaining both quali-
tative and quantitative information of the humidity and protein
present in these samples. Obviously, in this case, difficulties for a
proper calibration will be more important because of the larger
contribution of unknown physical contributions and chemical
interferents in the measured NIR spectra of the analyzed forage
samples. This example will probably illustrate the limits of the
use of the proposed MCR-ALS method for quantitative determi-
nations of natural samples using first order spectrophotometric
data. Comparison of MCR-ALS results with PLSR results is per-
tinent since this is a much extended method used for calibration
of NIR spectrophotometric data [37].

In Table 3, obtained results in the quantification of humidity
and protein in Ray-Grass forage samples using NIR spectropho-
tometric data and MCR-ALS and PLS are given. A summary of
prediction errors for these two analytes, using different number

Table 3
Figures of merit in the quantitative analysis of humidity and protein analytes in Ray-Grass samples using NIR spectrophotometry and PLS and MCR-ALS methods
Number of factors RMSEP SEP Bias 7~ RE (%)
ALS PLS ALS PLS ALS PLS ALS PLS ALS PLS
Humidity
5 0.391 0.313 0.370 0.316 0.045 0.008 0.962 0.973 4.383 3.721
6 0.369 0.301 0.370 0.305 0.046 0.009 0.962 0.975 4.387 3.585
7 0.358 0.307 0.360 0.311 0.043 0.006 0.964 0.974 4.260 3.654
8 0.361 0.289 0.363 0.292 0.030 0.008 0.963 0.977 4.287 3.432
9 0.285 0.313 0.289 0.313 0.004 0.004 0.977 0.973 3.394 3.724
10 0.286 0.269 0.290 0.268 —0.005 0.004 0.977 0.980 3.406 3.199
Protein
5 1.286 0.789 1.300 0.797 0.013 0.026 0.957 0.984 7.656 4.695
6 0.808 0.724 0.816 0.730 0.046 0.061 0.983 0.986 4.813 4314
7 0.841 0.623 0.850 0.628 0.002 0.049 0.982 0.990 5.008 3.711
8 0.871 0.560 0.880 0.555 0.003 0.011 0.980 0.992 5.184 3.334
9 0.973 0.559 0.981 0.559 0.074 0.083 0.976 0.992 5.792 3.327
10 0.748 0.559 0.755 0.560 0.050 0.070 0.986 0.992 4.45 3.327

See Table 1 for the meaning of RMSEP, SEP, Bias, % and RE (%).
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of factors for PLS and MCR-ALS are given. The optimal num-
ber of components was selected in each case by considering the
minimal RMSEP values. Errors in Table 3 are calculated for
external validation samples. In the case of the PLSR method,
results shown in Table 3 correspond to the application of the
model to mean centered spectra. And in the case of the MCR-
ALS, results shown in Table 3 correspond to data without any
data pretreatment. Constraints applied during the ALS optimiza-
tion were non-negativity (for concentration and spectra profiles)
and the new correlation constraint discussed in this work.
According to results shown in Table 3, it is difficult to decide
about the optimal number of components for the determination
of humidity. Whereas in the determination of humidity by PLS,
six components gave a first minimum of RMSEP (0.301) and of
relative error RE (%) (3.58) in the case of MCR-ALS, seven com-
ponents were needed from RMSEP (0.358) and RE% (4.26%)
values. This first selection of components should be considered
rather parsimonious since lower RMSEP and RE% values could
still be obtained (Table 3) if a larger number of components
were considered, for both PLS and ALS. However, since these
differences were not large, this first selection estimation was
considered good enough for the purposes of this comparative
work. For protein, the best number of components was eight
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factors for PLS and six factors for MCR-ALS. Prediction errors
(RMSEP) were 0.560 and 0.808 for PLS and MCR-ALS, respec-
tively. In this case, PLSR clearly outperformed MCR-ALS. This
improvement was probably due to the possibility to incorporate
a larger number of components in PLSR models compared to
MCR-ALS models. MCR-ALS could not resolve more compo-
nents as PLSR for a better quantification of protein because of the
intrinsic difficulties resolving minor components by MCR-ALS,
whereas they could still have some effect improving quantitative
estimations in PLSR. On the other hand, if RMSEP values are
compared using the same number of factors, for PLS and MCR-
ALS, some differences in the prediction error results are always
encountered which can be due to the fact that PLS, maximizes
relevant information in the first factors, and fits better calibration
and validation data. In Fig. 5, regression of humidity and protein
contents predicted by MCR-ALS and PLS versus the concen-
tration reference values, using the optimal number of factors in
each case, are given. In caption of Fig. 5 results of the elliptic
joint confidence region F test [42] for the slope and the intercept
of these regressions are given. This test considers that if no sys-
tematic errors are present, the theoretical point intercept should
be zero and the theoretical slope should be equal to one and that
their uncertainties should be located inside the corresponding
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Fig. 5. Humidity and protein concentrations values predicted by MCR-ALS and PLS models vs. concentration reference values in validation samples. (a) Humidity
values predicted by MCR-ALS vs. their reference values (F=0.18, «=0.91), (b) humidity predicted values by PLSR vs. their reference values (F=0.24, « =0.87),
(c) protein predicted values by MCR-ALS vs. reference values of protein (F=0.43, a=0.73), (d) protein predicted values by PLSR versus reference values of protein
(F=2.06, «=0.12). In parenthesis, calculated F values and significance levels for the regression slope and offset confidence region test (see Ref. [42]) are given.
Tabulated F value at the same degrees of freedom (vi =2+1=3 and v, =46 — 2 — 1 =43) and o =0.05 significance level is F=2.82.
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Fig. 6. Pure spectra of moisture and protein estimated by MCR-ALS (two top plots) and the same pure spectra of moisture and protein taken from the literature [43].

elliptic joint confidence region. In all cases, F test confirmed the
adequacy of the postulated models.

Nevertheless and in general, the determination of humidity
and protein in Ray-Grass forage samples using MCR-ALS were
also rather good and close to the optimal ones obtained by PLSR.
This is especially relevant if it is taken into account the intrin-
sic difficulties inherent to MCR-ALS to properly resolve and
quantificate components contributing very little to the measured
spectroscopic signal and also to the fact that neither sample
nor spectra pretreatment was performed using MCR-ALS. NIR
spectra resolved for humidity and protein using this method are
given in Fig. 6. Humidity spectra show clearly the characteris-
tic water bands at 1450 and 1940 nm. Protein spectra gave the
characteristic bands at 2050 and 2180 nm. In general, the vari-
ations in the content of N in forages caused a change in the
form of the bands located between 2000 and 2200 nm. In both
cases (humidity and protein), spectra resolved by MCR-ALS
were very similar to NIR spectra previously reported in the lit-
erature for humidity and protein in forages [43] (see lower part
of Fig. 6).

5. Conclusions
The predictive capability of MCR-ALS using the new cor-

relation constraint for a particular analyte in presence of
interferences in unknown mixtures and natural samples, was

in general comparable to the results obtained using PLSR cal-
ibration approaches. The main advantage of using MCR-ALS
instead of PLSR is, however, the simultaneous recovery of qual-
itative information (spectra confirmation) about the analyte and
possible unknown intereferents. In this work, we have presented
a preliminary contribution to this problem and further work is
needed to confirm the results here obtained.
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