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bstract

Application of multivariate curve resolution alternating least squares (MCR-ALS), for the resolution and quantification of different analytes
n different type of pharmaceutical and agricultural samples is shown. In particular, MCR-ALS is applied first to the UV spectrophotometric

uantitative analysis of mixtures of commercial steroid drugs, and second to the near-infrared (NIR) spectrophotometric quantitative analysis of
umidity and protein contents in forage cereal samples. Quantitative results obtained by MCR-ALS are compared to those obtained using the well
stablished partial least squares regression (PLSR) multivariate calibration method.

2007 Published by Elsevier B.V.
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. Introduction

In this work, direct quantitative spectrophotometric deter-
ination of mixtures of analytes in two types of samples is

nvestigated. First, mixtures of pharmaceutical products in drug
amples are analyzed by UV–vis spectrophotometry. This tech-
ique is a rapid and inexpensive analytical technique and as such
s highly suitable for control analyses of pharmaceutical prepa-
ations. However, the lack of selectivity of UV–vis absorption
easurements hinders its general application in the presence of

trongly overlapped absorption bands of the different sample
omponents. Pharmaceutical preparations are usually mixtures
f the active principles and of various excipients absorbing
n the same spectral region. The development of multivariate
alibration methods based on the mathematical resolution of
ultivariate signals can allow their rapid resolution and quan-

ification. The second type of samples studied in this work are

orage (cereal) agricultural samples analyzed by near-infrared
NIR) spectroscopy. This technique has gained wider acceptance
n different fields, due to its advantages over other analytical
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pectroscopic techniques. One of the best advantages of NIR
pectroscopy is the possibility of working in reflectance mode
nd the use of fibre optical probe modules easily coupled to the
pectrophotometer. This allows measurements of solid and liq-
id samples with little sample pretreatment, the implementation
f continuous methodologies, the fast acquisition of spectra and
he prediction of both physical and chemical parameters from
he same sample. Near-infrared spectrophotometry (NIRS) is

non-destructive technique, very fast and easy to implement,
ithout needing reagents and without wastes produced. Once

alibrated, NIRS is simple to operate and it is well suited for
he determination of the major components in many types of
amples, such as protein and water contents in food and for-
ge samples. Multivariate calibration methods like partial least
quares regression (PLSR) have been frequently used to extract
nalytical information from UV–vis and NIR spectra.

Since in general it is very difficult to have completely
elective analytical signals for every analyte of interest in a
ulticomponent sample, their physical separation by chromato-

raphic methods or by any other analytical separation methods,

r their mathematical resolution using chemometric methods
s a preliminary step necessary for their quantitative determi-
ation, especially in the analysis of complex natural samples.
part from the well known multivariate calibration methods

mailto:rtaqam@iiqab.csic.es
dx.doi.org/10.1016/j.talanta.2007.08.024
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ike PLSR [1,2] other chemometric methods exist that allow for
he direct mathematical analysis of the different components in
volving mixture systems (Evolving Factor Analysis, EFA) [3],
or the detection of the more selective variables (SIMPLISMA
4–6]) or for the resolution of the components simultaneously
resent in a particular data window (Window Factor Analysis
ethod [7]). The multivariate curve resolution alternating least

quares (MCR-ALS) method proposed in this work [8–13] has
een shown to provide an improved resolution compared to other
ethods and to allow quantitative determinations in the analy-

is of complex mixtures using spectroscopic means. MCR-ALS
as been applied to the study of complex industrial evolving
rocesses [14], to the investigation of multiequilibria systems
sing spectroscopic titrations (fluorescence, UV–vis absorption,
tc.) [15], to the resolution of multiple coeluted peaks in chro-
atography [10], to the resolution and quantification of mixtures

n flow injection analysis [16], to the resolution of the differ-
nt components in kinetic reactions and processes [17], to the
esolution of spectroscopic images [18], to multidimensional
pectroscopy [19], to electrophoretic studies of amino acids [20],
o voltammetric studies of metal complexes [21–23], to studies
f conformational changes of polynucleotide [24] and protein
olding processes [25], and to the resolution and apportionment
f environmental sources of contamination [26]. In this work,
he use of MCR-ALS is proposed for the quantitative determina-
ion of mixtures of analytes using first order spectrophotometric
ata (UV–vis and NIR absorption spectrophotometric data). A
orrelation constraint introduced in a previous work for the anal-
sis of mixtures of metal ions analyzed by voltammetry [22] is
xtended in this work to establish alternating least squares (ALS)
ultivariate calibration models for the quantitative determina-

ion of analyte mixtures using UV and NIR spectrophotometric
ata. The results obtained using MCR-ALS with this new cor-
elation constraint are then compared to those obtained using
he nowadays well established PLSR multivariate calibration
37].

. Experimental

.1. Reagents and solutions

The following reagents and solutions were used:

Acetonitril (Carlo Erba) for HPLC.
Methanol (Panreac) was used for the synthetic preparation of
standard, synthetic mixture and drug samples.
Etinilestradiol (Sigma), minimum 98% (HPLC).
Levonorgestrel (Sigma), minimum 98% (HPLC).

.2. Pharmaceutical products

Concentrated stock solutions of etinilestradiol and lev-
norgestrel were prepared in methanol. From these stock

olutions, 25 synthetic mixtures were prepared from which 15
amples were used as a calibration data set, and the remaining
amples were used as external validation data set. The concentra-
ion range of etinilestradiol was between 3 and 31 mg/l, and for

b
a
H
a

74 (2008) 1201–1210

evonorgestrel between 3 and 20 mg/l. Etinilestradiol and lev-
norgestrel were analyzed in commercial drugs: Microgynon,
eogynona and Triagynon (ochre and brown color). From 30
riginal drug samples, 20 were used as a calibration data set,
nd the remaining samples were used as external validation data
et.

The procedure used to prepare the drug samples was the
ollowing: for each drug around 20 tablets were weighted,
rinded and homogenized. Methanol was used as dissolvent.
rug samples were placed in an ultrasounds bath and then

entrifuged. UV–vis spectra were recorded, using methanol
s a blank. Concentrations of the two analytes in these drug
amples were estimated by high performance of liquid chro-
atography (HPLC). Chromatographic determinations were

erformed using diode array UV–vis, Hewlett Packard detector.
he column used is a reversed phase Spherisorb ODS-2 C18 col-
mn (15 cm long × 0.4 cm i.d., 5 �m particle size) with a C18
recolumn. The mobile phase composition used for the chro-
atographic determinations was acetonitril/H2O (40/60) (v/v).
flow rate of 1.2 ml/min was used.

.3. Forage samples

Different analytes in Ray-Grass forage samples were deter-
ined. The experimental procedure used before analyzing the
ay-Grass samples by means of NIR spectrophotometry was

ather simple: samples were grinded, milled, homogenized, put
n a capsule and directly measured by NIR spectrophotometry.
pectra from 125 samples were selected randomly for calibra-

ion, and spectra from other 46 samples were used for validation.
alibration samples were selected randomly trying to cover all

he observed spectral data variance. If one of the selected vali-
ation samples resulted to be outside of the range covered by the
alibration samples, it was exchanged by a calibration sample
ithin the calibration range.
Humidity reference concentrations were estimated from the

ample weight loss after oven drying at 103 ◦C for 4 h [27]. Some
olatile compounds apart from water could evaporate decreas-
ng sample total weight and causing excess errors, while other
ompounds may be oxidized, increasing the sample total weight
nd causing defect errors. Weight errors will depend on the
ompensation of these two effects. Protein reference concen-
rations have been estimated from nitrogen content analyzed
sing Kjeldhal method [28,29] and multiplied by a factor equals
o 6.25 (which is derived from the fact that proteins of for-
ges have an average content of nitrogen equals approximately
o 15%). The humidity concentration range was between 4.86
nd 13.33% (w/w), and for protein between 6.53 and 21.70%
w/w).

.4. Instrumentation

UV–vis spectrophotometric determinations were performed

y a Hewlett-Packard (Waldbronn, Germany) HP8452A diode
rray spectrophotometer. The instrument’s bundled software
P 89530 MS-DOS UV–vis includes facilities for controlling,

cquiring and processing spectra. In Fig. 1, the normalized
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where (ST)+ is the pseudoinverse matrix of the spectra matrix
ST, which is equal to S(STS)−1, when ST is of full rank [31]. If
the initial estimations are the concentration profiles, the uncon-
strained least squares solution for the spectra can be calculated
Fig. 1. Spectra of etinilestradiol and levonorgestrel analytes (left) and spectra

xperimental spectra of etinilestradiol and levonorgestrel are
resented (left), as well as spectra of the synthetic and com-
ercial drug mixtures of them (right).

Ultrasounds Bath, Selecta 0.61.
Centrifuge, Arlesa model Digicen.
NIR spectrophotometric determinations were performed
using NIRSystems 6500 FOSS spectrophotometer. Each of
the spectra finally considered is an average of 32 diffuse
reflectance spectra. Sample containers were rectangular cups.
The wavelength interval was 1100–2500 nm with 2 nm resolu-
tion. In Fig. 2, the obtained spectra of Ray-Grass samples are
shown. Laboratory temperatures were always kept between
20 and 25 ◦C and relative humidity was always between 45
and 65%.

. Chemometric methods

.1. Multivariate curve resolution alternating least squares
MCR-ALS)

The first step of this chemometric data analysis procedure is
o build up the data matrix, D. In the rows of this data matrix are
he different individual spectra measured for the different ana-
yzed samples and in the columns the absorbance (UV–vis) or
og 1/R (NIRS) measured values at each spectral wavelength.
irst a rough estimation of the possible number of components

s obtained using different methods like principal component
nalysis (PCA) [2,5,13]. A bilinear relation between the exper-
mental data, the concentrations and the pure spectra of the
omponents is assumed, of analogous structure to the general-
zed law of Lambert–Beer [30], where the individual responses
f each analyte or component are additive. In matrix form, this
ilinear model is expressed in the following way:
= CST + E (1)

here D(I,J) is the matrix of experimental data, of dimensions
samples (spectra) by J wavelengths; C(I,K) is the matrix of
synthetic mixture of them and of Microgynon and Neogynona drugs (right).

oncentration profiles of the different K analytes presents in the
amples; ST(K,J) is the spectra matrix, whose K rows contain the
ure spectra associate with the K species present in the samples;
(I,J) is the matrix associated to the experimental error. The

esolution of experimental spectral data matrix D consists of the
ollowing steps, which are summarized in Fig. 3.

To initiate the iterative ALS procedure, an initial estimation is
eeded for the spectral or concentration profiles for each species.
ifferent methods are used for this purpose like evolving fac-

or analysis [1–3] or the determination of the purest variables
4–6]. In this work, initial estimations based on purest variables
ere preferred. If the initial estimations are the spectral profiles,

he unconstrained least squares solution for the concentration
rofiles can be calculated from the expression:

= D(ST)
+

(2)
Fig. 2. NIR spectra of Ray-Grass calibration samples.
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ig. 3. Scheme of step of the resolution process in MCR-ALS method. See
ection 3.1.

rom the expression:

T = C+D (3)
here C+ is pseudoinverse of matrix C (C+ = (CTC)−1CT, when
is of full rank) [31]. Both steps can be implemented in an alter-

ating least squares cycle so that in each iteration new matrices
f C and ST are then obtained. However, during these iterative

r
m
n
I

Fig. 4. Detailed description of the corre
74 (2008) 1201–1210

alculations, a series of constraints with the purpose of giving
olutions with physical meaning and of limiting their possible
umber are applied [11,12]. Iterations continue until an optimal
olution is obtained that fulfils the constraints postulated and
he established convergence criteria. Constraints applied in this
ork are only described briefly.

.1.1. Nonnegativity concentration constraint
This is a general constraint used in curve resolution methods

32–36]. It is applied to the concentration profiles, due to the
act that the concentrations of the chemical species are always
ositive values or zero.

.1.2. Nonnegativity spectra constraint
The application of this constraint depends on what instru-

ental technique is used for detection. In the case of UV–vis or
IR spectra, the intensity of the radiation absorbed or reflected
y the sample never takes negative values.

.1.3. Correlation constraint
This constraint has been introduced for the simultaneous

uantitative analysis of mixtures of metal ions using voltammet-

ic analysis and it implies [22] the establishment of calibration
odels for MCR-ALS, to be used for the quantitative determi-

ation of the analytes in the presence of unknown interferences.
n this work, this constraint is extended to quantitative analysis

lation constraint. See Section 3.1.
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f spectral data in the simultaneous analysis of different analytes
n samples of increasing complexity, including forage samples.
his correlation constraint is explained in detail in Fig. 4, and

t consists, of a series of steps performed during each iteration
f the ALS optimization. Concentrations of a particular analyte
n calibration samples, ccal

ALS, obtained by ALS at each iteration
re correlated with previously known reference concentration
alues of the analyte cref in these samples. A local linear model
etween the values ccal

ALS and cref, is then built up so that:

ref = bccal
ALS + b0 + eref (4)

here, b and b0 are then the slope and offset values which better
t ccal

ALS to cref, obtained by least squares linear regression, and
ref is the error in the reference concentrations (not modeled) The
orresponding concentration values of these calibration samples
alculated using this local model are:

ˆcal = bccal
ALS + b0 (5)

And in order to predict the unknown concentration of the
nalyte in the new prediction samples ĉunk, the equation used is:

ˆunk = bcunk
ALS + b0 (6)

here b and b0 are the values obtained previously in the cal-
bration step from cref, and cunk

ALS are the concentrations of the
amples predicted by ALS. Each ALS iteration is then com-
leted after updating the obtained values of prediction (i.e., by
ubstitution of cunk

ALS by ĉunk).

.2. Partial least squares regression (PLSR)

PLSR method has been widely used in chemometrics to
egression problems with highly correlated variables as it is often
ncountered in spectroscopy [37,38]. This regression method is
ased on a prediction model for the analyte concentration in the
amples using efficiently the information contained in both data
locks, the spectroscopic data block (D matrix) and the concen-
rations data block (c vector). D and c were mean-centered prior
o decomposition in factors. The PLSR algorithm selects succes-
ive orthogonal factors that maximize the covariance between
pectra (D matrix) and analyte concentration (c vector). The
bjective of fitting a PLSR model, is to find a few number of
LSR factors that explain most of the covariation between both
ata blocks. Briefly, PLSR decomposes D and c into factor scores
T) and factor loadings (P and q) according to:

= TPT + E (7)

= Tq + f (8)

here T is the scores matrix, PT and q are the matrix and vector

oadings describing the variance in D and c, respectively, and E
nd f are the residuals in D and c, respectively. This decompo-
ition is performed simultaneously and in such a way that the
rst few factors should explain most of the covariation between
and c. The remaining factors resemble noise and can thus be

gnored, hence the addition of residuals E and f.

M
w
(
c
L
d
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.3. Validation of results

In order to asses the quality of multivariate calibration models
from PLSR and MCR-ALS), it is convenient to do their vali-
ation using new samples not used during the calibration step.
n this work, external validation was performed using a set of
ndependent samples, whose spectra were not used to build the
alibration model. From the whole original data set, a number of
epresentative samples were selected for the calibration set. The
emaining samples were then only used to validate the model.

The following expressions were used to express the validation
esults:

Root mean square error of prediction (RMSEP)

RMSEP =
√∑n

i=1(ci − ĉi)2

n
(9)

Standard error of prediction (SEP)

SEP =
√∑n

i=1(ci − ĉi − Bias)2

n − 1
(10)

Bias (is a meaning of systematic error)

Bias =
∑n

i=1(ci − ĉi)

n
(11)

In all these expressions, ci and ĉi are, respectively, the known
and calculated analyte concentration in sample i, and n is the
total number of samples considered in the validation. Also in
order to evaluate the quality of the obtained results of the con-
centrations predicted by the application of the MCR-ALS or
PLS models, for a particular analyte using n samples, the rela-
tive error in the predicted concentrations, in percentage (RE%),
was calculated as:

RE (%) = 100

√∑n
i=1(ci − ĉi)2∑n

i=1c2
i

(12)

.4. Chemometrics software

Data processing and PLS calibration calculations were car-
ied out using commercial software packages: PLS Toolbox
oftware version 2.1 (Eigenvector research, WA, USA) in

ATLAB computer and visualization environment (The Math-
orks, MA, USA), and UNSCRAMBLER software version 6.11
CAMO A/S, Trondheim, Norway, 1986–1997). Multivariate
urve resolution (MCR-ALS) has been implemented in MAT-
AB and it is available in Internet. See Ref. [13] for further
etails.
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Table 1
Figures of merit in the quantitative analysis of etinilestradiol and levonorgestrel
analytes in synthetic mixtures using UV spectrophotometry (at different wave-
length ranges) and PLS and MCR-ALS multivariate calibration methods

RMSEP SEP Bias RE (%) r2

Etinilestradiol
220–300 nm

ALS 0.738 0.486 0.581 3.316 0.9996
PLS 0.721 0.480 0.564 3.242 0.9996

230–300 nm
ALS 0.616 0.395 0.493 2.769 0.9997
PLS 0.610 0.399 0.483 2.742 0.9997

250–300 nm
ALS 0.591 0.371 0.478 2.655 0.9994
PLS 0.645 0.383 0.536 2.897 0.9994

Levonorgestrel
220–300 nm

ALS 0.098 0.073 0.070 0.784 0.9999
PLS 0.093 0.072 0.065 0.749 0.9999

RMSEP is root mean square error of prediction (Eq. (9)); SEP is standard error
of prediction (Eq. (10)); Bias is a systematic error (Eq. (11)); r2 is coefficient
o
l
p
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. Results and discussion

.1. MCR-ALS resolution and quantification of
tinilestradiol and levonorgestrel steroids on commercial
rugs analyzed by UV spectrophotometry

MCR-ALS has been applied first to synthetic experimental
ixture samples for the resolution and quantification of steroids.
esults were compared to those obtained by application of
LSR. Different wavelength intervals were investigated.

In Fig. 1, spectral profiles obtained by MCR-ALS are given.
hey are in agreement with the spectra of etinilestradiol and

evonorgestrel pure standards. In contrast to MCR-ALS, PLS
egression does not provide direct estimation of the pure spec-
ra of the components of the mixture, although PLS loadings
nd weights may be interpreted in relation to the more rele-
ant spectral features of the components present in the analyzed
ixtures, specially for those for which the quantitative analytic

nformation is available during the calibration step.
Quantitative results obtained by ALS and PLS methods for

he different wavelength intervals are compared in Table 1.
Errors in Table 1 are obtained for external validation samples

f synthetic mixtures. Number of components used in the cal-
bration model was two in both cases, either for etinilestradiol
r levonorgestrel. Constraints used in ALS optimization were
on-negativity (for concentration and spectra profiles) and the
ew correlation constraint proposed in this work. Quantifica-
ion errors obtained by MCR-ALS are in all the cases of the
ame order of magnitude than those obtained by application
f PLSR. Bias in the case of etinilestradiol is higher than the
ias obtained for levonorgestrel, which might be due to the
ower concentrations used for this analyte in the mixtures. In
he case of etinilestradiol the 230–300 nm interval gave the opti-
al quantification results and for levonorgestrel the best interval
as 220–300 nm. Once the wavelength interval was chosen for

he analysis of the two analytes in their synthetic mixtures,
ommercial drugs were analyzed using the same conditions.

i
c
f
w

able 2
igures of merit in the quantitative analysis of etinilestradiol and levonorgestrel analy
rugs, using UV spectrophotometry (at different wavelength ranges) and PLS and M

Etinilestradiol (250–300 nm)

RMSEP SEP Bias RE (%) r2

icrogynon
ALS 0.149 0.086 0.129 4.534 0.991
PLS 0.143 0.081 0.125 4.366 0.993

eogynona
ALS 0.062 0.073 0.017 1.856 0.996
PLS 0.088 0.075 0.063 2.642 0.996

riagynon (brown)
ALS 0.439 0.304 −0.361 4.457 0.990
PLS 0.422 0.289 −0.349 4.287 0.990

riagynon (ochre)
ALS 0.092 0.064 6.38é−2 2.909 0.992
PLS 0.124 0.071 1.09e−1 3.927 0.987

ee Table 1 for the meaning of RMSEP, SEP, bias, r2 and RE (%).
f correlation between calculated and actual concentration values of the ana-
yzed compounds; RE% is the relative error in the predicted concentrations, in
ercentage (Eq. (12)). See text.

In Table 2 (upper part), results of the quantification of
tinilestradiol and levonorgestrel steroids in Microgynon, com-
ercial drug are given. Quantification of etinilestradiol in
icrogynon resulted to be better in the 250–300 nm wavelength

nterval than in 220–300 nm range (see below), using three
omponents, either for PLSR or MCR-ALS. Obtained errors
ere of the same order for MCR-ALS and PLSR. These errors
ere slightly higher than those obtained for synthetic mixtures,
hich is reasonable, since in synthetic mixtures no excipient
nterferences were present. Also since etinilestradiol is a minor
omponent, it was more affected by the presence of these inter-
erences. For levonorgestrel, rather good quantification results
ere obtained at the same wavelength intervals than with syn-

tes, in Microgynon, Neogynona and Triagynon (brown and ochre) commercial
CR-ALS methods

Levonorgestrel (220–300 nm)

RMSEP SEP Bias RE (%) r2

9 0.284 0.279 0.150 1.723 0.9998
1 0.282 0.278 0.146 1.706 0.9998

3 0.184 0.226 0.002 1.007 0.9979
4 0.200 0.229 −0.071 1.094 0.9980

7 0.685 0.522 −0.551 3.747 0.9947
6 0.704 0.528 −0.557 3.856 0.9936

1 0.165 0.206 −3.21e−3 1.226 0.9970
3 0.159 0.181 −6.0ê−2 1.183 0.9986
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hetic mixtures (220–300 nm), either using MCR-ALS or PLSR,
sing three components in each case.

In Table 2 (middle part), results in the quantification of the
ame analytes in Neogynona drug are given. The optimal interval
or the quantification of etinilestradiol in Neogynona commer-
ial drug was the same than for the quantification of Microgynon
250–300 nm). The use of the more restricted 250–300 nm spec-
ral range for the analysis of these two commercial drugs instead
f the 220–300 nm spectral range used during the analysis of the
ynthetic mixtures was due to the presence of drug interferences
excipient) that also absorb in the 220–250 nm spectral range.
he inclusion of the 220–250 range would affect negatively the
uantification of etinilestradiol in the commercial drugs. So,
nally the 250–300 nm spectral range was considered to be the
est one for the quantification of this analyte. Obtained errors
ere of the same order for MCR-ALS and for PLSR, and a little
igher than for the synthetic mixtures. For levonorgestrel also
good quantification was obtained in the same wavelengths

nterval than for synthetic mixtures (220–300 nm), either for
CR-ALS or for PLSR. The number of components used to

xplain the model for each analyte, were in this case (like for
icrogynon) three components, either for PLSR or MCR-ALS.
And finally, also in Table 2 (lower part), obtained results for

he quantification of the two steroids in Triagynon (brown and
chre color), using MCR-ALS and PLS are also given. Optimal
avelength interval for the quantification of etinilestradiol in
riagynon (ochre and brown color pills) was at 250–300 nm,
nd obtained errors were of the same order for MCR-ALS and
or PLSR. For levonorgestrel, the optimal quantification was
btained in the wavelength interval of 230–300 nm, either for
CR-ALS or for PLSR. The number of components used to

xplain the model, for each analyte, was again three components,
ither for PLSR or for MCR-ALS.
Differences observed in the results obtained in all cases by
pplication of MCR-ALS or PLSR were considered to be little
ignificant. A deeper interpretation of these small differences
ould require the study of a larger number of samples with a

a
t
p

able 3
igures of merit in the quantitative analysis of humidity and protein analytes in Ray-G

umber of factors RMSEP SEP B

ALS PLS ALS PLS A

umidity
5 0.391 0.313 0.370 0.316
6 0.369 0.301 0.370 0.305
7 0.358 0.307 0.360 0.311
8 0.361 0.289 0.363 0.292
9 0.285 0.313 0.289 0.313
10 0.286 0.269 0.290 0.268 −

rotein
5 1.286 0.789 1.300 0.797
6 0.808 0.724 0.816 0.730
7 0.841 0.623 0.850 0.628
8 0.871 0.560 0.880 0.555
9 0.973 0.559 0.981 0.559
10 0.748 0.559 0.755 0.560

ee Table 1 for the meaning of RMSEP, SEP, Bias, r2 and RE (%).
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etter control of the factors that can influence these small dif-
erences. Nevertheless, it is possible to conclude that at least
n the analysis of synthetic mixtures and in the analysis of the
nvestigated commercial drugs, MCR-ALS provided quantita-
ive results of similar quality to those provided by the application
f PLSR. The obvious advantage of MCR-ALS compared to
LSR is, however, that MCR-ALS recovers the qualitative infor-
ation as well, including the pure spectra of the components

Fig. 1), and also of the interferents, allowing their possible
dentification/confirmation.

.2. MCR-ALS resolution and quantification of humidity
nd protein content on natural samples (Ray-Grass)
nalyzed by NIR spectrophotometry

NIR spectroscopy has been widely applied as an analyti-
al technique in the agricultural food sector, using partial least
quares (PLS) to develop calibration equations for the determi-
ation of the humidity and protein content [39–41]. In this work,
CR-ALS and PLS methods have been applied and compared

n the analysis of natural Ray-Grass forage samples using NIR
pectrophotometry, with the purpose of obtaining both quali-
ative and quantitative information of the humidity and protein
resent in these samples. Obviously, in this case, difficulties for a
roper calibration will be more important because of the larger
ontribution of unknown physical contributions and chemical
nterferents in the measured NIR spectra of the analyzed forage
amples. This example will probably illustrate the limits of the
se of the proposed MCR-ALS method for quantitative determi-
ations of natural samples using first order spectrophotometric
ata. Comparison of MCR-ALS results with PLSR results is per-
inent since this is a much extended method used for calibration
f NIR spectrophotometric data [37].
In Table 3, obtained results in the quantification of humidity
nd protein in Ray-Grass forage samples using NIR spectropho-
ometric data and MCR-ALS and PLS are given. A summary of
rediction errors for these two analytes, using different number

rass samples using NIR spectrophotometry and PLS and MCR-ALS methods

ias r2 RE (%)

LS PLS ALS PLS ALS PLS

0.045 0.008 0.962 0.973 4.383 3.721
0.046 0.009 0.962 0.975 4.387 3.585
0.043 0.006 0.964 0.974 4.260 3.654
0.030 0.008 0.963 0.977 4.287 3.432
0.004 0.004 0.977 0.973 3.394 3.724
0.005 0.004 0.977 0.980 3.406 3.199

0.013 0.026 0.957 0.984 7.656 4.695
0.046 0.061 0.983 0.986 4.813 4.314
0.002 0.049 0.982 0.990 5.008 3.711
0.003 0.011 0.980 0.992 5.184 3.334
0.074 0.083 0.976 0.992 5.792 3.327
0.050 0.070 0.986 0.992 4.45 3.327
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f factors for PLS and MCR-ALS are given. The optimal num-
er of components was selected in each case by considering the
inimal RMSEP values. Errors in Table 3 are calculated for

xternal validation samples. In the case of the PLSR method,
esults shown in Table 3 correspond to the application of the
odel to mean centered spectra. And in the case of the MCR-
LS, results shown in Table 3 correspond to data without any
ata pretreatment. Constraints applied during the ALS optimiza-
ion were non-negativity (for concentration and spectra profiles)
nd the new correlation constraint discussed in this work.

According to results shown in Table 3, it is difficult to decide
bout the optimal number of components for the determination
f humidity. Whereas in the determination of humidity by PLS,
ix components gave a first minimum of RMSEP (0.301) and of
elative error RE (%) (3.58) in the case of MCR-ALS, seven com-
onents were needed from RMSEP (0.358) and RE% (4.26%)
alues. This first selection of components should be considered
ather parsimonious since lower RMSEP and RE% values could
till be obtained (Table 3) if a larger number of components

ere considered, for both PLS and ALS. However, since these
ifferences were not large, this first selection estimation was
onsidered good enough for the purposes of this comparative
ork. For protein, the best number of components was eight

o
t
b
t

ig. 5. Humidity and protein concentrations values predicted by MCR-ALS and PLS
alues predicted by MCR-ALS vs. their reference values (F = 0.18, α = 0.91), (b) hum
c) protein predicted values by MCR-ALS vs. reference values of protein (F = 0.43, �

F = 2.06, α = 0.12). In parenthesis, calculated F values and significance levels for th
abulated F value at the same degrees of freedom (ν1 = 2 + 1 = 3 and ν2 = 46 − 2 − 1 =
74 (2008) 1201–1210

actors for PLS and six factors for MCR-ALS. Prediction errors
RMSEP) were 0.560 and 0.808 for PLS and MCR-ALS, respec-
ively. In this case, PLSR clearly outperformed MCR-ALS. This
mprovement was probably due to the possibility to incorporate
larger number of components in PLSR models compared to
CR-ALS models. MCR-ALS could not resolve more compo-

ents as PLSR for a better quantification of protein because of the
ntrinsic difficulties resolving minor components by MCR-ALS,
hereas they could still have some effect improving quantitative

stimations in PLSR. On the other hand, if RMSEP values are
ompared using the same number of factors, for PLS and MCR-
LS, some differences in the prediction error results are always

ncountered which can be due to the fact that PLS, maximizes
elevant information in the first factors, and fits better calibration
nd validation data. In Fig. 5, regression of humidity and protein
ontents predicted by MCR-ALS and PLS versus the concen-
ration reference values, using the optimal number of factors in
ach case, are given. In caption of Fig. 5 results of the elliptic
oint confidence region F test [42] for the slope and the intercept

f these regressions are given. This test considers that if no sys-
ematic errors are present, the theoretical point intercept should
e zero and the theoretical slope should be equal to one and that
heir uncertainties should be located inside the corresponding

models vs. concentration reference values in validation samples. (a) Humidity
idity predicted values by PLSR vs. their reference values (F = 0.24, α = 0.87),

=0.73), (d) protein predicted values by PLSR versus reference values of protein
e regression slope and offset confidence region test (see Ref. [42]) are given.
43) and α = 0.05 significance level is F = 2.82.
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ig. 6. Pure spectra of moisture and protein estimated by MCR-ALS (two top p

lliptic joint confidence region. In all cases, F test confirmed the
dequacy of the postulated models.

Nevertheless and in general, the determination of humidity
nd protein in Ray-Grass forage samples using MCR-ALS were
lso rather good and close to the optimal ones obtained by PLSR.
his is especially relevant if it is taken into account the intrin-
ic difficulties inherent to MCR-ALS to properly resolve and
uantificate components contributing very little to the measured
pectroscopic signal and also to the fact that neither sample
or spectra pretreatment was performed using MCR-ALS. NIR
pectra resolved for humidity and protein using this method are
iven in Fig. 6. Humidity spectra show clearly the characteris-
ic water bands at 1450 and 1940 nm. Protein spectra gave the
haracteristic bands at 2050 and 2180 nm. In general, the vari-
tions in the content of N in forages caused a change in the
orm of the bands located between 2000 and 2200 nm. In both
ases (humidity and protein), spectra resolved by MCR-ALS
ere very similar to NIR spectra previously reported in the lit-

rature for humidity and protein in forages [43] (see lower part
f Fig. 6).

. Conclusions
The predictive capability of MCR-ALS using the new cor-
elation constraint for a particular analyte in presence of
nterferences in unknown mixtures and natural samples, was

[
[
[

[

nd the same pure spectra of moisture and protein taken from the literature [43].

n general comparable to the results obtained using PLSR cal-
bration approaches. The main advantage of using MCR-ALS
nstead of PLSR is, however, the simultaneous recovery of qual-
tative information (spectra confirmation) about the analyte and
ossible unknown intereferents. In this work, we have presented
preliminary contribution to this problem and further work is

eeded to confirm the results here obtained.
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